April 27, 2025

Wellness Sync

Start the Day with a Smile, Finish with Health

An overview of clinical decision support systems: benefits, risks, and strategies for success

An overview of clinical decision support systems: benefits, risks, and strategies for success

  • Osheroff, J. et al. Improving Outcomes with Clinical Decision Support: An Implementer’s Guide. (HIMSS Publishing, 2012).

  • Sim, I. et al. Clinical decision support systems for the practice of evidence-based medicine. J. Am. Med Inf. Assoc. Jamia. 8, 527–534 (2001).

    Article 
    CAS 

    Google Scholar 

  • De Dombal, F. Computers, diagnoses and patients with acute abdominal pain. Arch. Emerg. Med. 9, 267–270 (1992).

  • Shortliffe, E. H. & Buchanan, B. G. A model of inexact resoning in medicine. Math. Biosci. 379, 233–262 (1975).

    Google Scholar 

  • Middleton, B., Sittig, D. F. & Wright, A. Clinical decision support: a 25 year retrospective and a 25 year vision. Yearb. Med. Inform. 25(S 01), S103–S116 (2016).

    Article 

    Google Scholar 

  • Dias, D. Wearable health devices—vital sign monitoring, systems and technologies. (2018).

  • Berner, E. S. (Ed.). Clinical Decision Support Systems (Springer, New York, NY, 2007).

  • Osheroff, J., Pifer, E., Teigh, J., Sittig, D. & Jenders, R. Improving Outcomes with Clinical Decision Support: An Implementer’s Guide. (HIMS, 2005).

  • Deo, R. C. Machine learning in medicine. Circulation 132, 1920–1930 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • HITECH Act Enforcement Interim Final Rule. https://www.hhs.gov/hipaa/for-professionals/special-topics/HITECH-act-enforcement-interim-final-rule/index.html.

  • Electronic medical record adoption model requirements. Accessed 25 Aug 2019 (2017).

  • Chang, F. & Gupta, N. Progress in electronic medical record adoption in Canada Recherche Les progrès dans l’ adoption du dossier médical électronique au Canada. Canadian Family Physician. 61, 1076–1084 (2015).

  • Healthcare Information and Management Systems Society (HIMSS). Electronic Health Records: A Global Perspective, 2nd edn. (2010).

  • Nøhr, C. et al. Nationwide citizen access to their health data: analysing and comparing experiences in Denmark, Estonia and Australia. 1–11. (2017).

  • Omididan, Z. & Hadianfar, A. The role of clinical decision support systems in healthcare (1980-2010): a systematic review study. Jentashapir Sci.-Res Q. 2, 125–134 (2011).

    Google Scholar 

  • Kabane, S. M. Healthcare and the Effect of Technology: Developments, Challenges and Advancements: Developments, Challenges and Advancements. Medical Information Science Reference (2010).

  • Vonbach, P., Dubied, A., Krähenbühl, S. & Beer, J. H. Prevalence of drug-drug interactions at hospital entry and during hospital stay of patients in internal medicine. Eur. J. Intern. Med. 19, 413–420 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Helmons, P. J., Suijkerbuijk, B. O., Nannan Panday, P. V. & Kosterink, J. G. W. Drug-drug interaction checking assisted by clinical decision support: a return on investment analysis. J. Am. Med. Inf. Assoc. Jamia. 22, 764–772 (2015).

    Article 

    Google Scholar 

  • Koutkias, V. & Bouaud, J. Contributions from the 2017 Literature on Clinical Decision Support. Yearb. Med. Inf. 27, 122–128 (2018).

    Article 
    CAS 

    Google Scholar 

  • Phansalkar, S. et al. High-priority drug – drug interactions for use in electronic health records. J. Am. Med. Inform. Assoc. 19, 735–743 (2012).

  • Cornu, P., Phansalkar, S., Seger, D. L., Cho, I. & Pontefract, S. International Journal of Medical Informatics High-priority and low-priority drug – drug interactions in di ff erent international electronic health record systems: a comparative study. Int. J. Med. Inf. 111, 165–171 (2018).

    Article 

    Google Scholar 

  • McEvoy, D. S. et al. Variation in high-priority drug-drug interaction alerts across institutions and electronic health records. J. Am. Med. Inf. Assoc. 24, 331–338 (2017).

    Article 

    Google Scholar 

  • Cho, I., Lee, J., Choi, J., Hwang, H. & Bates, D. W. National rules for drug-drug interactions: are they appropriate for tertiary hospitals?. J. Korean Med. Sci. 31, 1887–1896 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahoney, C. D., Berard-Collins, C. M., Coleman, R., Amaral, J. F. & Cotter, C. M. Effects of an integrated clinical information system on medication safety in a multi-hospital setting. Am. J. Health Syst. Pharm. 64, 1969–1977 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Peris-Lopez, P., Orfila, A., Mitrokotsa, A. & van der Lubbe, J. C. A. A comprehensive RFID solution to enhance inpatient medication safety. Int. J. Med. Inf. 80, 13–24 (2011).

    Article 

    Google Scholar 

  • Levtzion-korach, O. et al. Effect of bar-code technology on the safety of medication administration. N. Engl. J. Med. 362, 1698–1707 (2010).

    Article 
    PubMed 

    Google Scholar 

  • van der Veen, W. et al. Association between workarounds and medication administration errors in bar-code-assisted medication administration in hospitals. J. Am. Med. Inf. Assoc. 25, 385–392 (2018).

    Article 

    Google Scholar 

  • Eslami, S. et al. Effects of two different levels of computerized decision support on blood glucose regulation in critically ill patients. Int J. Med. Inf. 81, 53–60 (2012).

    Article 

    Google Scholar 

  • Jia, P., Zhang, L., Chen, J., Zhao, P. & Zhang, M. The effects of clinical decision support systems on medication safety: an overview. PLoS ONE 11, 1–17 (2016).

    Google Scholar 

  • Kwok, R., Dinh, M., Dinh, D. & Chu, M. Improving adherence to asthma clinical guidelines and discharge documentation from emergency departments: Implementation of a dynamic and integrated electronic decision support system. Emerg. Med. Australas. 21, 31–37 (2009).

    PubMed 

    Google Scholar 

  • Davis, D. A. & Taylor-Vaisey, A. Translating guidelines into practice: a systematic review of theoretic concepts, practical experience and research evidence in the adoption of clinical practice guidelines. Can. Med. Assoc. J. 157, 408–416 (1997).

    CAS 

    Google Scholar 

  • Michael, C., Rand, C. S., Powe, N. R., Wu, A. W. & Wilson, M. H. Why don’ t physicians follow clinical practice guidelines? a framework for improvement. Jama,. 282, 1458–1465 (1999).

    Article 

    Google Scholar 

  • Shortliffe, T. Medical thinking: what should we do? (2006).

  • Lipton, J. A. et al. Impact of an alerting clinical decision support system for glucose control on protocol compliance and glycemic control in the intensive cardiac care unit. Diabetes Technol. Ther. 13, 343–349 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Salem, H. et al. A multicentre integration of a computer led follow up in surgical oncology is valid and safe. BJU Int. (2018).

  • Health Information Technology Foundations Module 28: Clinical Decision Support Basics. Carnegie Mellon University Open Learning Initiative. https://oli.cmu.edu/jcourse/workbook/activity/page?context=e6f7c0b180020ca600c0f4e5957d6f8c.

  • Embi, P. J., Jain, A., Clark, J. & Harris, C. M. Development of an electronic health record-based Clinical Trial Alert system to enhance recruitment at the point of care. AMIA Annu. Symp. Proc. 2005, 231–235 (2005).

  • Calloway, S., Akilo, H. & Bierman, K. Impact of a clinical decision support system on pharmacy clinical interventions, documentation efforts, and costs. Hosp. Pharm. 48, 744–752 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMullin, S. T. et al. Impact of an evidence-based computerized decision support system on primary care prescription costs. Ann. Fam. Med. 2, 494–498 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Algaze, C. A. et al. Use of a checklist and clinical decision support tool reduces laboratory use and improves cost. Pediatrics 137, e20143019 (2016).

    Article 

    Google Scholar 

  • Pruszydlo, M. G., Walk-Fritz, S. U., Hoppe-Tichy, T., Kaltschmidt, J. & Haefeli, W. E. Development and evaluation of a computerised clinical decision support system for switching drugs at the interface between primary and tertiary care. BMC Med. Inf. Decis. Mak. 12, 1 (2012).

    Article 

    Google Scholar 

  • Bell, C. M., Jalali, A. & Mensah, E. A decision support tool for using an ICD-10 anatomographer to address admission coding inaccuracies: a commentary. Online J. Public Health Inform. 5, 222 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haberman, S. et al. Effect of clinical-decision support on documentation compliance in an electronic medical record. Obstet. Gynecol. 114, 311–317 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Turchin, A., Shubina, M. & Gandhi, T. NLP for patient safety: splenectomy and pneumovax. In Proc. AMIA 2010 Annual Symposium (2010).

  • McEvoy, D., Gandhi, T. K., Turchin, A. & Wright, A. Enhancing problem list documentation in electronic health records using two methods: the example of prior splenectomy. BMJ Qual Saf. (2017).

  • Berner E. Clinical Decision Support Systems: Theory and Practice 3rd edn. (2016).

  • Berner, E. S. Diagnostic decision support systems: why aren’t they used more and what can we do about it? AMIA Annu. Symp. Proc. 2006, 1167–1168 (2006).

  • Segal, M. M. et al. Experience with integrating diagnostic decision support software with electronic health records: benefits versus risks of information sharing. EGEMs Gener. Evid. Methods Improv. Patient Outcomes 5, 23 (2017).

    Article 

    Google Scholar 

  • Kunhimangalam, R., Ovallath, S. & Joseph, P. K. A clinical decision support system with an integrated EMR for diagnosis of peripheral neuropathy. J. Med. Syst. 38, 38 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Martinez-Franco, A. I. et al. Diagnostic accuracy in Family Medicine residents using a clinical decision support system (DXplain): a randomized-controlled trial. Diagn. Berl. Ger. 5, 71–76 (2018).

    Article 

    Google Scholar 

  • Singh, H., Schiff, G. D., Graber, M. L., Onakpoya, I. & Thompson, M. J. The global burden of diagnostic errors in primary care. BMJ Qual. Saf. 26, 484–494 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Singh, H., Meyer, A. N. D. & Thomas, E. J. The frequency of diagnostic errors in outpatient care: Estimations from three large observational studies involving US adult populations. BMJ Qual. Saf. 23, 727–731 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Razzaki, S. et al. A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis. arXiv preprint arXiv:1806.10698 (2018).

  • Fraser, H., Coiera, E. & Wong, D. Safety of patient-facing digital symptom checkers. Lancet 392, 2263–2264 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Georgiou, A., Prgomet, M., Markewycz, A., Adams, E. & Westbrook, J. I. The impact of computerized provider order entry systems on medical-imaging services: a systematic review. J. Am. Med. Inf. Assoc. 18, 335–340 (2011).

    Article 

    Google Scholar 

  • Blackmore, C. C., Mecklenburg, R. S. & Kaplan, G. S. Effectiveness of clinical decision support in controlling inappropriate imaging. JACR 8, 19–25 (2019).

    Google Scholar 

  • DSS Inc. Radiology Decision Support (RadWise®). https://www.dssinc.com/products/integrated-clinical-products/radwise-radiology-decision-support/.

  • Giardino, A. et al. Role of imaging in the era of precision medicine. Acad. Radiol. 24, 639–649 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Oakden-rayner, L. et al. Precision Radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci. Rep. (2017).

  • From Invisible to Visible: IBM Demos AI to Radiologists. Accessed Aug 2019 (2016).

  • Greenspan, H., Ginneken van, B. & Summers, R. M. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35, 1153–1159 (2016).

    Article 

    Google Scholar 

  • Suzuki, K. & Chen, Y. Artificial intelligence in decision support systems for diagnosis in medical imaging. (2018).

  • IBM Watson Health – IBM Watson for Oncology. Accessed 25 Aug 2019 (2018).

  • Lunit Inc. Accessed Aug 2019 (2018).

  • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA – J. Am. Med. Assoc. 316, 2402–2410 (2016).

    Article 

    Google Scholar 

  • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajpurkar, P. et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017).

  • Hannun, A. Y. et al. FOCUS | Letters FOCUS | Letters Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network letters | FOCUS letters | FOCUS. Nat. Med. (2019).

  • Erickson, B. J. Machine Intelligence in Medical Imaging (Society for Imaging Informatics, SIIM, 2016).

  • Keltch, B., Lin, Y. & Bayrak, C. Comparison of AI techniques for prediction of liver fibrosis in hepatitis patients patient facing systems. J. Med. Syst. (2014).

  • Mørkrid, L. et al. Continuous age- and sex-adjusted reference intervals of urinary markers for cerebral creatine deficiency syndromes: a novel approach to the definition of reference intervals. Clin. Chem. 61, 760–768 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Spyridonos, P., Cavouras, D., Ravazoula, P. & Nikiforidis, G. A computer-based diagnostic and prognostic system for assessing urinary bladder tumour grade and predicting cancer recurrence. Med. Inf. Internet Med. 27, 111–122 (2002).

    Article 
    CAS 

    Google Scholar 

  • Tsolaki, E. et al. Fast spectroscopic multiple analysis (FASMA) for brain tumor classification: a clinical decision support system utilizing multi-parametric 3T MR data. Int. J. Comput. Assist Radio. Surg. 10, 1149–1166 (2015).

    Article 

    Google Scholar 

  • Davis, S., Roudsari, A., Raworth, R., Courtney, K. L. & Mackay, L. Shared decision-making using personal health record technology: a scoping review at the crossroads. J. Am. Med. Inf. Assoc. 24, 857–866 (2017).

    Article 

    Google Scholar 

  • Fuji, K. T. et al. Standalone personal health records in the United States: meeting patient desires. Health Technol. 2, 197–205 (2012).

    Article 

    Google Scholar 

  • Tang, P. C., Ash, J. S., Bates, D. W., Overhage, J. M. & Sands, D. Z. Personal health records: definitions, benefits, and strategies for overcoming barriers to adoption. J. Am. Med. Inf. Assoc. 13, 121–126 (2006).

    Article 
    CAS 

    Google Scholar 

  • Wald, J. S. et al. A patient-controlled journal for an electronic medical record: issues and challenges. Stud. Health Technol. Inform. 107(Pt 2), 1166–1170 (2004).

    PubMed 

    Google Scholar 

  • Hanauer, D. A., Preib, R., Zheng, K. & Choi, S. W. Patient-initiated electronic health record amendment requests. J. Am. Med. Inf. Assoc. 21, 992–1000 (2014).

    Article 

    Google Scholar 

  • Rosenbloom, S. T. et al. Triaging patients at risk of influenza using a patient portal. J. Am. Med. Inf. Assoc. 19, 549–554 (2012).

    Article 

    Google Scholar 

  • Roehrs, A., Da Costa, C. A., Da Rosa Righi, R. & De Oliveira, K. S. F. Personal health records: A systematic literature review. J. Med. Internet Res. (2017).

  • Benhamou, P. Y. Improving diabetes management with electronic health records and patients’ health records. Diabetes Metab. 37(Suppl. 4), S53–S56 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Kumar, R. B., Goren, N. D., Stark, D. E., Wall, D. P. & Longhurst, C. A. Automated integration of continuous glucose monitor data in the electronic health record using consumer technology. J. Am. Med. Inf. Assoc. 23, 532–537 (2016).

    Article 

    Google Scholar 

  • Kilsdonk, E., Peute, L. W., Riezebos, R. J., Kremer, L. C. & Jaspers, M. W. M. Uncovering healthcare practitioners’ information processing using the think-aloud method: From paper-based guideline to clinical decision support system. Int. J. Med. Inf. 86, 10–19 (2016).

    Article 
    CAS 

    Google Scholar 

  • Dowding, D. et al. Nurses’ use of computerised clinical decision support systems: A case site analysis. J. Clin. Nurs. 18, 1159–1167 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Ash, J. S., Sittig, D. F., Campbell, E. M., Guappone, K. P. & Dykstra, R. H. Some unintended consequences of clinical decision support systems. AMIA Annu Symp. Proc. AMIA Symp. AMIA Symp. 2007, 26–30 (2007).

    Google Scholar 

  • Khalifa, M. & Zabani, I. Improving utilization of clinical decision support systems by reducing alert fatigue: Strategies and recommendations. Stud. Health Technol. Inform. 226, 51–54 (2016).

    PubMed 

    Google Scholar 

  • Van Laere, S. et al. Clinical decision support systems for drug allergy checking: systematic review. (2018).

  • Wyatt, J. & Spiegelhalter, D. Field trials of medical decision-aids: potential problems and solutions. American Medical Informatics Association. 3–7. (1991).

  • Goddard, K., Roudsari, A. & Wyatt, J. Automation bias – A hidden issue for clinical decision support system use. Stud. Health Technol. Inform. 164, 17–22 (2011).

    PubMed 

    Google Scholar 

  • Devaraj, S., Sharma, S. K., Fausto, D. J., Viernes, S. & Kharrazi, H. Barriers and facilitators to clinical decision support systems adoption: a systematic review. J. Bus Adm. Res. (2014).

  • Leslie, S. J. et al. Clinical decision support software for management of chronic heart failure: Development and evaluation. Comput Biol. Med. 36, 495–506 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Murray, E. et al. Why is it difficult to implement e-health initiatives? A qualitative study. Implement Sci. 6, 6 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lai, F., Macmillan, J., Daudelin, D. H. & Kent, D. M. The potential of training to increase acceptance and use of computerized decision support systems for medical diagnosis. Hum. Factors J. Hum. Factors Erg. Soc. 48, 95–108 (2006).

    Article 

    Google Scholar 

  • Ojeleye, L. Ensuring effective computerised clinical decision support. Prescriber 27, 54–56 (2016).

    Article 

    Google Scholar 

  • Cook, D. A., Teixeira, M. T., Heale, B. S. E., Cimino, J. J. & Del Fiol, G. Context-sensitive decision support (infobuttons) in electronic health records: a systematic review. J. Am. Med Inf. Assoc. 24, 460–468 (2017).

    Article 

    Google Scholar 

  • Sujansky, W. Heterogeneous database integration in biomedicine. J. Biomed. Inform. 34, 285–298 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Index – FHIR v3.0.1. (2018). Accessed July 2019.

  • Katehakis, D. G. Towards the Development of a National eHealth Interoperability Framework to Address Public Health Challenges in Greece. Proceedings of the First International Workshop on Semantic Web Technologies for Health Data Management, SWH@ISWC. 2164, 1–9 (2018).

  • EHRIntelligence. 5 Ways States Mandate Health Information Exchange. Accessed Aug 2019 (2015).

  • European Commission Report. Commission Recommendation on a European Electronic Health Record Exchange Format (C(2019)800) of 6 February 2019. (2019).

  • Bresnick, J. HealthITAnalytics. Interoperability, Low Costs Make Cloud-Based EHRs a Favorite. Accessed July 2019 (2015).

  • Fernández-Cardeñosa, G., De La Torre-Díez, I., López-Coronado, M. & Rodrigues, J. J. P. C. Analysis of cloud-based solutions on EHRs systems in different scenarios. J. Med. Syst. 36, 3777–3782 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Rodrigues, J. J. P. C., de la Torre, I., Fernández, G. & López-Coronado, M. Analysis of the security and privacy requirements of cloud-based electronic health records systems. J. Med. Internet Res. 15, e186 (2013).

  • Kabachinski, J. A look at clinical decision support systems. Biomed. Instrum. Technol. 47, 432–434 (2013).

    Article 
    PubMed 

    Google Scholar 

  • O’Reilly, D., Tarride, J.-E., Goeree, R., Lokker, C. & McKibbon, K. A. The economics of health information technology in medication management: a systematic review of economic evaluations. J. Am. Med. Inf. Assoc. 19, 423–438 (2012).

    Article 

    Google Scholar 

  • Bright, T. J. et al. Effect of clinical decision-support systems: a systematic review. Ann. Intern Med. 157, 29–43 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Jacob, V. et al. Cost and economic benefit of clinical decision support systems (CDSS) for cardiovascular disease prevention: a community guide systematic review. J. Am. Med. Inf. Assoc. Jamia. 24, 669–676 (2017).

    Article 

    Google Scholar 

  • Main, C. et al. Computerised decision support systems in order communication for diagnostic, screening or monitoring test ordering: systematic reviews of the effects and cost-effectiveness of systems. Health Technol. Assess. 14, 1–227 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Scheepers-Hoeks, A. M., Grouls, R. J., Neef, C. & Korsten, H. H. Strategy for implementation and first results of advanced clinical decision support in hospital pharmacy practice. Stud. Health Technol. Inform. 148, 142–148 (2009).

  • Edlin, R., McCabe, C., Hulme, C., Hall, P. & Wright, J. Cost effectiveness modelling for health technology assessment. (2015).

  • Vermeulen, K. M. et al. Cost-effectiveness of an electronic medication ordering system (CPOE/CDSS) in hospitalized patients. Int J. Med, Inf. 83, 572–580 (2014).

    Article 
    CAS 

    Google Scholar 

  • Okumura, L. M., Veroneze, I., Burgardt, C. I. & Fragoso, M. F. Effects of a computerized provider order entry and a clinical decision support system to improve cefazolin use in surgical prophylaxis: a cost saving analysis. Pharm. Pract. 14, 1–7 (2016).

    Google Scholar 

  • Osheroff, J. A. et al. A roadmap for national action on clinical decision support. J. Am. Med. Inf. Assoc. 14, 141–145 (2007).

    Article 

    Google Scholar 

  • Greenes, R. A. Clinical Decision Support 2nd edn. The Road to Broad Adoption (2014).

  • Bonney, W. Impacts and risks of adopting clinical decision support systems. In: Efficient Decision Support Systems – Practice and Challenges in Biomedical Related Domain. IntechOpen (2011).

  • Bates, D. W. et al. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J. Am. Med. Inf. Assoc. 10, 523–530 (2003).

    Article 

    Google Scholar 

  • Kawamoto, K. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. Bmj 330, 765–0 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Health Level Seven International – Homepage. Accessed 29 Aug 2019 (2018).

  • IHTSDO. History of SNOMED CT. Ihtsdo. (2015).

  • Marco-Ruiz, L. & Bellika, J. G. Semantic Interoperability in Clinical Decision Support Systems: A Systematic Review. Stud. Health Technol. Inf. 216, 958 (2015).

    Google Scholar 

  • Angraal, S., Krumholz, H. M. & Schulz, W. L. Blockchain technology: applications in health care. Circ. Cardiovasc. Qual. Outcomes (2017).

  • Ivan, D. Moving toward a blockchain-based method for the secure storage of patient records. ONC/NIST Use of Blockchain for Healthcare and Research Workshop. Gaithersburg, Maryland, United States: ONC/NIST (2016).

  • Eichner, J. & Das, M. Challenges and Barriers to Clinical Decision Support (CDS) Design and Implementation Experienced in the Agency for Healthcare Research and Quality CDS Demonstrations. Agency Healthc Res. Qual. Website. 29. (2010).

  • Khalifa, M. Clinical decision support: strategies for success. Procedia Comput. Sci. 37, 422–427 (2014).

    Article 

    Google Scholar 

  • Sittig, D. F. Electronic Health Records: Challenges in Design and Implementation. (CRC Press, 2014).

  • Harper, B. D. & Norman, K. L. Improving User Satisfaction: The Questionnaire for User Interaction Satisfaction Version 5.5. Proceedings of the 1st Annual Mid-Atlantic Human Factors Conference, (pp. 224–228), Virginia Beach, VA. (1993).

  • Lewis, J. R. The system usability scale: past, present, and future. Int J. Hum.-Comput. Interact. 34, 577–590 (2018).

    Article 

    Google Scholar 

  • Lewis, J. R. IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J. Hum.-Comput. Interact. 7, 57–78 (1995).

    Article 

    Google Scholar 

  • Lewis, J. R. Measuring perceived usability: the CSUQ, SUS, and UMUX. Int J. Hum.-Comput Interact. 34, 1148–1156 (2018).

    Article 

    Google Scholar 

  • link